

FormaPure Total:

Protocol for DNA and RNA Isolation from the Same FFPE Sample

Refer to www.beckmancoulter.com/ifu for updated protocols. For questions regarding this protocol, call Technical Support at Beckman Coulter at 1-800-369-0333.

Contents

- Introduction
- Kit Specifications
- Warnings and Precautions
- Materials Supplied
- Materials Required but not Supplied
- Process Overview
- Sample Preparation
- There are three isolation protocol options available:
 - Protocol for DNA and RNA Isolation from the Same FFPE Sample
 - Protocol for RNA-Only Isolation
 - Protocol for DNA-Only Isolation

Introduction

The FormaPure Total extraction and purification kit uses the patented Beckman Coulter SPRI paramagnetic bead-based technology to isolate both DNA and RNA from formalin-fixed, paraffin-embedded (FFPE) tissue, without the use of xylene. This kit has been optimized for use with downstream sequencing and genotyping assays. Specifically, genomic DNA and RNA isolated with the FormaPure Total kit are compatible with the following downstream applications:

- Targeted NGS
- Whole exome sequencing
- · Whole genome sequencing
- RNA-seq
- Endpoint or qPCR

© 2017 Beckman Coulter, Inc.

FormaPure Total isolates both DNA and RNA from FFPE tissue sections totaling a thickness of up to 3×10 µm. The protocol can be performed in both 96-well plates (manually and automated) and in 1.5 mL tubes (manually only). Nucleic acid extraction begins with the solubilization of the paraffin from the tissue slices in tubes. An enzymatic lysis step digests the tissue and releases the nucleic acids, as well as gently decrosslinks RNA. Half of the lysate is removed to perform RNA isolation, while the other half undergoes DNA isolation, which involves decrosslinking the remaining lysate at a high temperature. The rest of the protocol can be carried out in plates or tubes:

- For RNA isolation, a binding solution is added to immobilize the nucleic acids to the surface of the SPRI beads. Contaminants are rinsed away using a simple washing procedure, DNA is removed from the sample, and RNA is again immobilized on the surface of the SPRI beads before eluting with water.
- *For DNA isolation*, RNA is removed from the sample, and a binding solution is added to immobilize the DNA to the surface of the SPRI beads. Contaminants are rinsed away using a simple washing procedure, and the DNA is eluted with water.

Kit Specifications

Kit Type	Part Number	Number of Preps	
Medium	C16676	96	
Small	C16675	50	

Warnings and Precautions

Read and observe the following safety information.

IMPORTANT The symbol indicates a potential safety risk involving the material, action, or equipment required for executing a procedural action; when you see the symbol, return to this section to review relevant safety information.

(1)	DANGER	
Proteinase K		
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.	
H335	May cause respiratory irritation.	
P261	Avoid breathing vapors.	
P280	Wear protective gloves, protective clothing and eye/face protection.	
P284	In case of inadequate ventilation, wear respiratory protection.	
P304+P340	IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing.	
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.	
SDS	Safety Data Sheet is available at techdocs.beckmancoulter.com.	

CAUTION

Risk of chemical injury from Proteinase K. To avoid contact with Proteinase K, wear appropriate personal protective equipment, including protective eyewear, gloves, and suitable laboratory attire. Refer to the Safety Data Sheet for details about chemical exposure before using the chemical.

CAUTION

Risk of burning from hot liquid splattering into your eyes or onto your skin. Wear appropriate personal protective equipment while incubating the samples. Place tube cap locks on the tubes to prevent the tops of the tubes from opening during incubation.

Materials Supplied

The following reagents are supplied in the FormaPure Total kit. The reagent icon, which is located on the top of the corresponding bottle, is included in the instructions as a visual aid to ensure the correct reagent is used.

NOTE Refer to the product labels for expiration dates.

Reagent	Icon	Storage Conditions	
Mineral Oil	MO	15 to 30 °C	
Lysis	LBA	15 to 30 °C	
Bind	BBA	15 to 30 °C	
Wash	WBA	15 to 30 °C	
Re-Bind	RBA	15 to 30 °C	
RNase A	-	15 to 30 °C	
Proteinase K	-	15 to 30 °C	

Materials Required but not Supplied

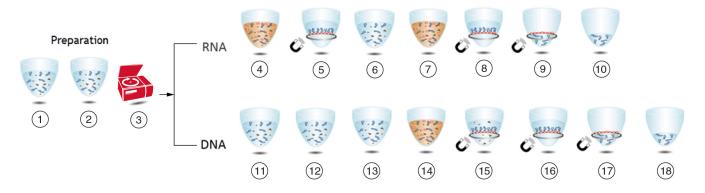
FormaPure samples can be processed in a 96-well plate or tube format. Refer to the tables below for the items required for this procedure:

- Hardware & Accessories
- Consumables
- Reagents

Hardware & Accessories

Item	Туре		
Adjustable Heat Source	 Thermomixer with 1.5 mL tubes and plate adaptor and heated lid Or Hybex with 1.5 mL tubes and plate adaptor Two heat sources of any type are recommended for the protocol. 		
Vortexer	Not specified.		
Microcentrifuge	Beckman Coulter Microcentrifuge 16		
	Or equivalent.		
Bead Separation Magnet	 Agencourt SPRIStand Magnetic 6-Tube Stand (for 1.5, 1.7, or 2.0 mL tubes) (Beckman Coulter), PN A29182 Or 		
	• V&P Scientific 7 Bar Magnet, PN VP 771MWZM-1ALT (for 96-Well Plate)		

Consumables


Item	Туре		
Microcentrifuge Tubes	1.5 mL		
Cap Locks	for Microcentrifuge Tubes		
96-Well Plate	1.2 mL, ThermoFisher Scientific, PN AB1127		
	Or equivalent.		
96-Well Storage Plate	200 μL		
PCR Adhesive Seals	for 96-Well Plate		

Reagents

Item	Supplier	Catalog Name	Catalog Number
100% Ethanol (Molecular Grade) ^a	AmericanBio	Ethanol, Absolute Alcohol, 200 Proof, Anhydrous	AB00138
DNase I	ThermoFisher Scientific	Ambion DNase I (RNase-free)	AM2222 or AM2224
Nuclease-Free Water ^a	ThermoFisher Scientific	Nuclease-Free Water (not DEPC-Treated)	AM9932

a. The recommended **Supplier**, **Catalog Name**, and **Catalog Number** for this item is provided; if necessary, an equivalent product may be substituted for the listed product.

Process Overview

- 1. Deparaffinization at 80°C.
- 2. Lysis/decrosslink at 60°C.
- 3. Spin at high speed and remove half of the lysate for RNA workflow. Process the remaining lysate for DNA isolation.
- 4. Bind.
- 5. 80% Ethanol wash.

- 6. DNase I treatment.
- 7. Re-Bind.
- 8. 80% Ethanol wash.
- 9. Elution Buffer.
- 10. Transfer.
- **11.** Extended lysis at 60°C. (Optional for DNA-only workflow.)

- 12. Decrosslink at 80°C.
- 13. RNase A treatment.
- **14.** Bind.
- 15. Wash.
- 16.80% Ethanol wash.
- 17. Elution Buffer.
- 18. Transfer.

Sample Preparation

Before You Begin

- Preheat adjustable heat sources to 80°C and 60°C.
- Prepare 80% Ethanol from 100% stock using Nuclease-Free Water.

IMPORTANT Do not use a previously-prepared solution, as it may have a lower ethanol percentage, causing yield loss.

IMPORTANT This protocol uses ethanol in multiple steps. Dispose of supernatant containing ethanol waste in accordance with local regulations and acceptable laboratory practices.

• Wear appropriate personal protective equipment (PPE) when handling samples and reagents.

Procedure

1 Sample Preparation:

For each sample, transfer one to three $10 \mu m$ FFPE tissue sections into a 1.5 mL tube.

2 Deparaffinization:

a. Add 450 μL of Mineral Oil MO to each sample and immerse the sections completely with a pipette tip.

NOTE Make sure that the sample is completely immersed and does not float due to attached bubbles.

- b. Incubate at 80°C for 5 minutes.
- **c.** After incubation, vortex the tubes two times, for five seconds each time, to solubilize the paraffin and disperse the tissue.

3 Tissue Digestion:

- a. Add 200 μ L of Lysis LBA to each sample.
- **b.** Centrifuge the tubes at $10,000 \times g$ for 15 seconds. The mineral oil forms a separate upper phase.

NOTE Incubate the tubes for 3 more minutes at 80°C if the mineral oil layer appears cloudy and the tissue is stuck at the interface of mineral oil and lysis buffer. After the incubation, make sure to cool the tubes for 2 minutes before adding Proteinase K.

- c. Add 20 μL of Proteinase K to the aqueous, lower phase and mix by pipetting up and down 10 times without disrupting the upper phase.
- d. Incubate the tubes at 60°C for 120 minutes.

4 To perform:

- **DNA and RNA isolation from the same sample**, proceed to Protocol for DNA and RNA Isolation from the Same FFPE Sample, page 9.
- RNA isolation only, skip to Protocol for RNA-Only Isolation, page 14.
- **DNA isolation only**, skip to Protocol for DNA-Only Isolation, page 17.

Protocol for DNA and RNA Isolation from the Same FFPE Sample

This section contains complete instructions for performing DNA and RNA extractions and purifications from the same sample. To execute this protocol, complete the instructions in each of the following procedures:

- **1.** *Lysate Splitting*, page 9
- 2. RNA Isolation, page 10
- **3.** DNA Isolation, page 12

Lysate Splitting

To perform lysate splitting:

- 1 Take the tubes out of the heat source and centrifuge them at $10,000 \times g$ for 5 minutes.
- Split the lysate by transferring $100 \, \mu L$ of the clear lysate (lower phase) to a 96-well plate, or to 1.5 mL tubes, without disrupting the upper phase (mineral oil) or any present pellet. This portion of the lysate will proceed through the RNA isolation protocol.
 - **NOTE** If the tissue is clogging the pipette tip, you may centrifuge the tubes for additional time.
 - **NOTE** Minimize the amount of mineral oil that is transferred along with the lysate. However, a small amount of mineral oil carryover does not affect downstream applications.
- **IMPORTANT** After RNA lysate removal, if there is a pellet of undigested tissue in the original tube, mix the lower aqueous phase by pipetting up and down 10 times, without disrupting the upper phase before incubation.
- Incubate the original tube containing the remaining lysate (for DNA isolation) at 60°C for an additional 60 minutes.
 - **NOTE** If needed, a longer (or overnight) lysis can be done at **60°C** before proceeding to the decrosslinking step in *DNA Isolation*.
 - **NOTE** This step must be completed prior to performing the steps in *DNA Isolation*; however, while this step executes (i.e., the remaining lysate is undergoing extended lysis and decrosslinking incubations), the RNA extraction protocol can be completed in parallel; see *RNA Isolation* below for instructions.

C19682AA 9 / 20

RNA Isolation

To perform RNA isolation:

1 First Bind:

- **a.** Fully re-suspend the **Bind** (BBA) by shaking or vortexing.
- **b.** Add **150 \muL** of **Bind** BBA to each sample and mix by pipetting up and down 10 times with a P200 pipette set at 150 μ L. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for **5 minutes**.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear. If using:
 - A 96-well plate, place the samples on the bar magnet plate.
 - Tubes, place the tubes in an Agencourt SPRIStand Magnetic 6-Tube Stand.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

2 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **375** μL of freshly prepared **80% Ethanol** to each sample.
- **c.** Using a P1000 pipette set at 300 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

3 DNase I Treatment:

- **a.** Remove the samples from the magnet.
- **b.** Add **80** μ L of Nuclease-Free Water to each sample.
- c. Add 10 μ L of 10× DNase I buffer and 10 μ L of DNase I to each sample.
- **d.** Mix by pipetting up and down five times with a P200 pipette set at 80 μ L to thoroughly distribute the buffer and enzyme. Mix gently to minimize the generation of bubbles.
- e. Seal the plate with an adhesive seal, or close the tubes, and incubate at 37°C for 20 minutes.

4 Re-Bind:

- a. Add 150 μ L of Re-Bind RBA to each sample and mix by pipetting up and down 10 times with a P200 pipette set at 150 μ L. Mix gently to minimize the generation of bubbles.
- **b.** Incubate at room temperature for **5 minutes**.
- **c.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear.
- **d.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

5 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **375 μL** of freshly prepared **80% Ethanol** to each sample.
- **c.** Using a P1000 pipette set at 300 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

6 Elution:

- **a.** Remove the samples from the magnet.
- **b.** Add **40 µL** of **Nuclease-Free Water** to each sample and mix by pipetting up and down 10 times, or until beads are fully re-suspended, with a P200 pipette set at 30 µL.
- **c.** Cap tubes or cover the plate with an adhesive plate seal and incubate at **60°C** for **1 minute**.
- **d.** Place the samples on the magnet for 1 minute; if the solution is not fully clear after 1 minute, incubate until clear.
- **e.** With the samples on the magnet, transfer as much of the supernatant as possible to a 96-well storage plate, or to a new tube, without disturbing the magnetic beads.
- **f.** Store at -20°C, or -80°C for long-term storage.

C19682AA 11 / 20

DNA Isolation

To perform DNA isolation:

1 Decrosslinking:

- a. Incubate the tubes at 80°C for 60 minutes after the lysis.
- **b.** Remove the tubes from the heat source.
- **c.** Transfer as much of the lysate (lower phase) as possible to a 96-well plate, or to 1.5 mL tubes, without disrupting the upper phase.

NOTE Minimize the amount of mineral oil that is transferred along with the lysate. However, a small amount of mineral oil carryover does not affect downstream applications.

2 RNase A Treatment:

- a. Add $2.5 \mu L$ of RNase A to each sample.
- **b.** Mix by pipetting up and down 5 times with a P200 pipette set at 75 μ L to thoroughly distribute the enzyme. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for **5 minutes**.

3 Bind DNA:

- **a.** Fully re-suspend the **Bind** (BBA) by shaking or vortexing.
- **b.** Add 150 μ L of Bind BBA to each sample and mix by pipetting up and down 10 times with a P200 pipette set at 150 μ L. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for **5 minutes**.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear. If using:
 - A 96-well plate, place the samples on the bar magnet plate.
 - Tubes, place the tubes in an Agencourt SPRIStand Magnetic 6-Tube Stand.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

4 Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **200 μL** of **Wash** WBA to each sample.

- **c.** Using a P200 pipette set at 125 μ L, mix by pipetting up and down 15 times or until the beads are fully re-suspended in the solution. Mix gently to minimize the generation of bubbles.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

5 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add $375 \mu L$ of freshly prepared 80% Ethanol to each sample.
- **c.** Using a P1000 pipette set at 300 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

6 Elution:

- **a.** Remove the samples from the magnet.
- **b.** Add **40 \muL** of **Nuclease-Free Water** to each sample and mix by pipetting up and down 10 times, or until beads are fully re-suspended, with a P200 pipette set at 30 μ L.
- **c.** Cap tubes or cover the plate with an adhesive plate seal and incubate at **60°C** for one minute.
- **d.** Place the samples on the magnet for 1 minute; if the solution is not fully clear after 1 minute, incubate until clear.
- **e.** With the samples on the magnet, transfer as much of the supernatant as possible to a 96-well storage plate, or to a new tube, without disturbing the magnetic beads.
- **f.** Store at -20°C.

C19682AA 13 / 20

Protocol for RNA-Only Isolation

To perform RNA extraction and purification:

1 Lysate Transfer:

- **a.** Take the tubes out of the heat source and centrifuge the tubes at $10,000 \times g$ for 5 minutes.
- **b.** Transfer all of the clear lysate (lower phase) to a 96-well plate, or to 1.5 mL tubes, without disrupting the upper phase (mineral oil) or the pellet.

NOTE If the tissue is clogging the pipette tip, you may centrifuge the tubes for additional time.

NOTE Minimize the amount of Mineral Oil that is transferred along with the lysate. However, a small amount of Mineral Oil carryover does not affect downstream applications.

2 First Bind:

- **a.** Fully re-suspend the **Bind** (BBA) by shaking or vortexing.
- **b.** Add **300 \muL** of **Bind** BBA to each sample and mix by pipetting up and down 10 times with a P1000 pipette set at 350 μ L. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for **5 minutes**.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear. If using:
 - A 96-well plate, place the samples on the bar magnet plate.
 - Tubes, place the tubes in an Agencourt SPRIStand Magnetic 6-Tube Stand.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

3 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **750 μL** of freshly prepared **80% Ethanol** to each sample.
- **c.** Using a P1000 pipette set at 600 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

4 DNase I Treatment:

- **a.** Remove the samples from the magnet.
- **b.** Add **80 \muL** of **Nuclease-Free Water** to each sample.
- c. Add 10 μ L of 10× DNase I buffer and 10 μ L of DNase I to each sample.
- **d.** Mix by pipetting up and down 5 times with a P200 pipette set at 80 μL to thoroughly distribute the buffer and enzyme. Mix gently to minimize the generation of bubbles.
- **e.** Cover the plate with an adhesive seal, or close the tubes, and incubate at **37°C** for **20 minutes**.

5 Re-Bind:

- **a.** Add **150 \muL** of **Re-Bind** (RBA) to each sample and mix by pipetting up and down 10 times with a P200 pipette set at 150 μ L. Mix gently to minimize the generation of bubbles.
- **b.** Incubate at room temperature for **5 minutes**.
- **c.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes. incubate until clear.
- **d.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

6 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **750 μL** of freshly prepared **80% Ethanol** to each sample.
- **c.** Using a P1000 pipette set at 600 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

7 Elution:

- **a.** Remove the samples from the magnet.
- **b.** Add a minimum of **40 \muL** of **Nuclease-Free Water** to each sample and mix by pipetting up and down 10 times, or until beads are fully re-suspended, with a P200 pipette set at 30 μ L.
- **c.** Cap tubes or cover the plate with a PCR adhesive seal and incubate at **60°C** for one minute.
- **d.** Place the samples on the magnet for 1 minute; if the solution is not fully clear after 1 minute, incubate until clear.
- **e.** With the samples on the magnet, transfer as much of the supernatant as possible to a 96-well storage plate, or to a new tube, without disturbing the magnetic beads.
- **f.** Store at -20°C, or -80°C for long-term storage.

Protocol for DNA-Only Isolation

To perform DNA isolation:

NOTE If needed, an extended (up to overnight) lysis can be done at **60°C** before proceeding to the **Decrosslinking** step below.

1 Decrosslinking:

- Incubate the tubes at 80°C for 60 minutes after the lysis.
- **b.** Remove the tubes from the heat source.
- **c.** Transfer as much of the lysate (lower phase) as possible to a 96-well plate, or to 1.5 mL tubes, without disrupting the upper phase.

NOTE Minimize the amount of mineral oil that is transferred along with the lysate. However, a small amount of mineral oil carryover does not affect downstream applications.

2 RNase A Treatment:

- a. Add 5 μ L of RNase A to each sample.
- **b.** Mix by pipetting up and down five times with a P200 pipette set at 150 μ L to thoroughly distribute the enzyme. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for five minutes.

3 Bind DNA:

- **a.** Fully re-suspend the **Bind** BBA by shaking or vortexing.
- **b.** Add **300 \muL** of **Bind** (BBA) to each sample and mix by pipetting up and down 10 times with a P1000 pipette set at 350 μ L. Mix gently to minimize the generation of bubbles.
- **c.** Incubate at room temperature for **5 minutes**.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear. If using:
 - A 96-well plate, place the samples on the bar magnet plate.
 - Tubes, place the tubes in an Agencourt SPRIStand Magnetic 6-Tube Stand.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

C19682AA 17 / 20

4 Wash:

- a. Remove the samples from the magnet.
- b. Add 400 μL of Wash WBA to each sample.
- c. Using a P1000 pipette set at 250 μ L, mix by pipetting up and down 15 times or until the beads are fully re-suspended in the solution. Mix gently to minimize the generation of bubbles.
- **d.** Place the samples on the magnet for 10 minutes; if the solution is not fully clear after 10 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.

5 Ethanol Wash:

- **a.** Remove the samples from the magnet.
- **b.** Add **750 μL** of freshly prepared **80% Ethanol** to each sample.
- **c.** Using a P1000 pipette set at 600 μ L, mix by pipetting up and down 20 times, or until the beads are fully re-suspended.
- **d.** Place the samples on the magnet for 3 minutes; if the solution is not fully clear after 3 minutes, incubate until clear.
- **e.** With the samples on the magnet, aspirate the supernatant without disrupting the beads. Discard the supernatant.
- **f.** Air dry the samples on the magnet for 10 minutes.

6 Elution:

- **a.** Remove the samples from the magnet.
- **b.** Add a minimum of **40 μL** of **Nuclease-Free Water** to each sample and mix by pipetting up and down 10 times, or until beads are fully re-suspended, with a P200 pipette set at 30 μL.
- c. Cap tubes or cover the plate with a PCR adhesive seal and incubate at 60°C for one minute.
- **d.** Place the samples on the magnet for 1 minute; if the solution is not fully clear after 1 minute, incubate until clear.
- **e.** With the samples on the magnet, transfer as much of the supernatant as possible to a 96-well storage plate, or to a new tube, without disturbing the magnetic beads.
- **f.** Store at -20°C.

Product Availability

FormaPure Total

REF C16675 — FormaPure Total, 50 Prep Kit

REF C16676 — FormaPure Total, 96 Prep Kit

Trademarks

Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries.

For additional information, or if damaged product is received, call Beckman Coulter Customer Service at 800-742-2345 (USA or Canada) or contact your local Beckman Coulter Representative.

Glossary of Symbols is available at techdocs.beckmancoulter.com (PN C05838).

C19682AA 19 / 20

Beckman Coulter, Inc. 250 S. Kraemer Blvd. Brea, CA 92821 U.S.A.

© 2017 Beckman Coulter, Inc. All Rights Reserved